Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex.
نویسندگان
چکیده
We compared the effects of three different doses of allopregnanolone (4, 8 or 16 mg/kg), a metabolite of progesterone, to progesterone (16 mg/kg) in adult rats with controlled cortical impact to the pre-frontal cortex. Injections were given 1 h, 6 h and every day for 5 consecutive days after the injury. One day after injury, both progesterone-treated (16 mg/kg) and allopregnanolone (8 or 16 mg/kg)-treated rats showed less caspase-3 activity, and rats treated with allopregnanolone (16 mg/kg) showed less DNA fragmentation in the lesion area, indicating reduced apoptosis. Nineteen days after the injury, rats treated with progesterone and allopregnanolone (8 or 16 mg/kg) showed no difference in necrotic cavity size but had less cell loss in the medio-dorsal nucleus of the thalamus and less learning and memory impairments compared with the injured vehicle-treated rats. On that same day the injured rats treated with progesterone showed more weight gain compared with the injured rats treated with the vehicle. These results can be taken to show that progesterone and allopregnanolone have similar neuroprotective effects after traumatic brain injury, but allopregnanolone appears to be more potent than progesterone in facilitating CNS repair.
منابع مشابه
Decrease in Cavity Size and Oligodendrocyte Cell Death Using Neurosphere-Derived Oligodendrocyte-Like Cells in Spinal Cord Contusion Model
Background: Oligodendrocyte cell death is among the important features of spinal cord injury, which appears within 15 min and occurs intensely for 4 h after injury, in the rat spinal contusion model. Accordingly, the number of oligodendrocytes progressively reduced within 24 h after injury. Administration of oligodendrocyte-like cells (OLCs) into the lesion area is one of the approaches to coun...
متن کاملPrenatal Mercuric Chloride Exposure Causes Developmental Deficits in Rat Cortex
Introduction: Environmental pollution with heavy metals such as mercury is a major health problem. Growing studies on the field have shown the deleterious effects of mercury on human and nonhuman nervous system, especially in infants, however the effects of prenatal exposure to mercuricchloride on cortical development are not yet well understood. The aim of this study was to investigate the eff...
متن کاملUncontrolled stress produces severe defect in development of frontal cortex in the rat
One of the most important factors in drug addiction is stress. It has been shown that animals with prenatal stress history are more risky for drug dependence. It have also been shown that frontal cortex play a role in drug dependence. In the present study the effects of two kinds of mild stress during pregnancy on the development of frontal cortex in Wistar rats (250-300 g) were investigated. F...
متن کاملChronic Ritalin Administration during Adulthood Increases Serotonin Pool in Rat Medial Frontal Cortex
Background: Ritalin has high tendency to be abused. It has been the main indication to control attention deficit hyperactivity disorder. The college students may seek for it to improve their memory, decrease the need for sleep (especially during exams), which at least partially, can be related to serotonergic system. Therefore, it seems worthy to evaluate the effect of Ritalin intake on mature ...
متن کاملCinnamaldehyde improves methamphetamine-induced spatial learning and memory deficits and restores ERK signaling in the rat prefrontal cortex
Objective(s): Methamphetamine is a stimulant compound that penetrates readily into the central nervous system. Repeated exposure to methamphetamine leads to damage in the dopaminergic and serotonergic axons of selected brain regions. Previous studies showed that cinnamaldehyde improved memory impairment in animals. In the present study, we aimed to elucidate the effects of cinnamaldehyde on met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 123 2 شماره
صفحات -
تاریخ انتشار 2004